Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Endocrinology ; 165(5)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38500360

RESUMO

Acromegaly and gigantism are disorders caused by hypersecretion of growth hormone (GH), usually from pituitary adenomas. Although somatostatin analogues (SSA), dopamine agonists, and GH receptor antagonists are important therapeutic agents, all of these have issues with their effectiveness, safety, and/or convenience of use. To overcome these, we developed a GH-specific potent neutralizing a mouse monoclonal antibody (mAb) named 13H02. 13H02 selectively bound both to human and monkey GH with high affinity, and strongly inhibited the biological activity of GH in the Nb2 rat lymphoma cell proliferation assay. In hypophysectomized/GH-supplemented rats, a single subcutaneous administration of 13H02 significantly and dose-dependently lowered the serum insulin-like growth factor-1 levels. To pursue the therapeutic potential of this antibody for acromegaly and gigantism, we humanized 13H02 to reduce its immunogenicity and applied a single amino acid mutation in the Fc region to extend its serum half-life. The resulting antibody, Hu-13H02m, also showed GH-specific neutralizing activity, similar to the parental 13H02, and showed improved binding affinity to human FcRn.


Assuntos
Acromegalia , Gigantismo , Hormônio do Crescimento Humano , Camundongos , Humanos , Feminino , Animais , Ratos , Hormônio do Crescimento Humano/farmacologia , Hormônio do Crescimento Humano/metabolismo , Acromegalia/tratamento farmacológico , Gigantismo/complicações , Gigantismo/tratamento farmacológico , 60515 , Anticorpos Neutralizantes/farmacologia , Anticorpos Neutralizantes/uso terapêutico , Hormônio do Crescimento/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico
2.
J Med Chem ; 67(2): 1406-1420, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38214909

RESUMO

Matrix metalloproteinase-7 (MMP-7) has been shown to play an important role in pathophysiological processes such as cancer and fibrosis. We previously discovered selective MMP-7 inhibitors by molecular hybridization and structure-based drug design. However, the systemic clearance (CLtot) of the biologically active lead compound was very high. Because our studies revealed that hepatic uptake by organic anion transporting polypeptide (OATP) was responsible for the high CLtot, we found a novel approach to reducing their uptake based on isoelectric point (IP) values as an indicator for substrate recognition by OATP1B1/1B3. Our "IP shift strategy" to adjust the IP values culminated in the discovery of TP0628103 (18), which is characterized by reduced in vitro OATP-mediated hepatic uptake and in vivo CLtot. Our in vitro-in vivo extrapolation of OATP-mediated clearance and the "IP shift strategy" provide crucial insights for a new medicinal chemistry approach to reducing the systemic clearance of OATP1B1/1B3 substrates.


Assuntos
Metaloproteinase 7 da Matriz , Transportadores de Ânions Orgânicos , Transportador 1 de Ânion Orgânico Específico do Fígado , Ponto Isoelétrico , Fígado , Interações Medicamentosas , Hepatócitos
3.
J Hypertens ; 42(1): 118-128, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37711097

RESUMO

BACKGROUND: The stroke-prone spontaneously hypertensive rat (SHRSP) is a genetic model for cerebral stroke. Although a recent study on a congenic SHRSP suggested that a nonsense mutation in stromal interaction molecule 1 ( Stim1 ) encoding a major component of store-operated Ca 2+ entry was a causal variant for stroke in SHRSP, this was not conclusive because the congenic region including Stim1 in that rat was too wide. On the other hand, we demonstrated that the Wistar-Kyoto (WKY)-derived congenic fragment adjacent to Stim1 exacerbated stroke susceptibility in a congenic SHRSP called SPwch1.71. In the present study, we directly examined the effects of the Stim1 genotype on stroke susceptibility using SHRSP in which wild-type Stim1 was knocked in (called Stim1 -KI SHRSP). The combined effects of Stim1 and the congenic fragment of SPwch1.71 were also investigated. METHODS: Stroke susceptibility was assessed by the stroke symptom-free and survival periods based on observations of behavioral symptoms and reductions in body weight. RESULTS: Stim1 -KI SHRSP was more resistant to, while SPwch1.71 was more susceptible to stroke than the original SHRSP. Introgression of the wild-type Stim1 of Stim1 -KI SHRSP into SPwch1.71 by the generation of F1 rats ameliorated stroke susceptibility in SPwch1.71. Gene expression, whole-genome sequencing, and biochemical analyses identified Art2b , Folr1 , and Pde2a as possible candidate genes accelerating stroke in SPwch1.71. CONCLUSION: The substitution of SHRSP-type Stim1 to wild-type Stim1 ameliorated stroke susceptibility in both SHRSP and SPwch1.71, indicating that the nonsense mutation in Stim1 is causally related to stroke susceptibility in SHRSP.


Assuntos
Hipertensão , Acidente Vascular Cerebral , Humanos , Ratos , Animais , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Hipertensão/complicações , Hipertensão/genética , Hipertensão/metabolismo , Cromossomos Humanos Par 1/metabolismo , Molécula 1 de Interação Estromal/genética , Códon sem Sentido , Genótipo , Acidente Vascular Cerebral/etiologia
4.
J Pharmacol Exp Ther ; 386(1): 56-69, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37142440

RESUMO

Kidney fibrosis is considered the essential pathophysiological process for the progression of chronic kidney disease (CKD) toward renal failure. 20-Hydroxyeicosatetraenoic acid (20-HETE) has crucial roles in modulating the vascular response in the kidney and the progression of albuminuria. However, the roles of 20-HETE in kidney fibrosis are largely unexplored. In the current research, we hypothesized that if 20-HETE has important roles in the progression of kidney fibrosis, 20-HETE synthesis inhibitors might be effective against kidney fibrosis. To verify our hypothesis, this study investigated the effect of a novel and selective 20-HETE synthesis inhibitor, TP0472993, on the development of kidney fibrosis after folic acid- and obstructive-induced nephropathy in mice. Chronic treatment with TP0472993 at doses of 0.3 and 3 mg/kg twice a day attenuated the degree of kidney fibrosis in the folic acid nephropathy and the unilateral ureteral obstruction (UUO) mice, as demonstrated by reductions in Masson's trichrome staining and the renal collagen content. In addition, TP0472993 reduced renal inflammation, as demonstrated by markedly reducing interleukin-1ß (IL-1ß) and tumor necrosis factor alpha (TNF-α) levels in the renal tissue. Chronic treatment with TP0472993 also reduced the activity of extracellular signal-regulated kinase 1/2 (ERK1/2) and signal transducer and activator of transcription 3 (STAT3) in the kidney of UUO mice. Our observations indicate that inhibition of 20-HETE production with TP0472993 suppresses the kidney fibrosis progression via a reduction in the ERK1/2 and STAT3 signaling pathway, suggesting that 20-HETE synthesis inhibitors might be a novel treatment option against CKD. SIGNIFICANCE STATEMENT: In this study, we demonstrate that the pharmacological blockade of 20-hydroxyeicosatetraenoic acid (20-HETE) synthesis using TP0472993 suppresses the progression of kidney fibrosis after folic acid- and obstructive-induced nephropathy in mice, indicating that 20-HETE might have key roles in the pathogenesis of kidney fibrosis. TP0472993 has the potential to be a novel therapeutic approach against chronic kidney disease.


Assuntos
Nefropatias , Nefrite , Insuficiência Renal Crônica , Obstrução Ureteral , Camundongos , Animais , Nefropatias/tratamento farmacológico , Nefropatias/prevenção & controle , Rim , Nefrite/metabolismo , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia , Insuficiência Renal Crônica/complicações , Fibrose , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
5.
Exp Anim ; 72(4): 439-445, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37081644

RESUMO

Hypertension and atherosclerosis are often found in one patient causing serious cardiovascular events. An animal model simultaneously expressing hypertension and atherosclerosis would be useful to study such a complex risk status. We therefore attempted to introduce a null mutation of the apolipoprotein E (ApoE) gene into the spontaneously hypertensive rat (SHR) using CRISPR/Cas9 to establish a genetic model for atherosclerosis with hypertension. We successfully established SHRApoE(-/-) having a 13-bps deletion in the 5'-end of ApoE gene. Deletion of ApoE protein was confirmed by Western blotting. Blood pressure of SHRApoE(-/-) was comparable to that of SHR. Feeding the rats with high fat high cholesterol diet (HFD) caused a significant increase in LDL cholesterol as well as in triglyceride in SHRApoE(-/-). After 8 weeks of HFD loading, superficial fat deposition was observed both in the aorta and the mesenteric arteries of SHRApoE(-/-) instead of mature atheromatous lesions found in humans. In addition, a null mutation of peroxiredoxin 2 (Prdx2) was introduced into SHRApoE(-/-) to examine the effect of increased oxidative stress on the development of atherosclerosis. SHR with the double depletion of ApoE and Prdx2 did not show mature atheroma either. Further, salt loading did not promote development of atheroma although it accelerated the development of fat deposition. These results indicated that when compared with ApoE-knockout mice, SHRApoE(-/-) was more resistant to atherosclerosis even though they have severe hypertension.


Assuntos
Aterosclerose , Hipertensão , Placa Aterosclerótica , Camundongos , Humanos , Ratos , Animais , Ratos Endogâmicos SHR , Aterosclerose/genética , Aterosclerose/metabolismo , Hipertensão/genética , Camundongos Knockout , Apolipoproteínas E/genética
6.
J Med Chem ; 65(21): 14599-14613, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36318660

RESUMO

20-Hydroxyeicosatetraenoic acid (20-HETE) is one of the major oxidized arachidonic acid (AA) metabolites produced by cytochrome P450 (CYP) 4A11 and CYP4F2 isozymes in the human liver and kidney. Numerous studies have suggested the involvement of 20-HETE in the pathogenesis of renal diseases, and suppression of 20-HETE production by inhibition of CYP4A11 and CYP4F2 may be an attractive therapeutic strategy for renal diseases. At first, we identified methylthiazole derivative 2 as a potent dual inhibitor of CYP4A11 and CYP4F2. An optimization study of a series of derivatives with a molecular weight of around 300 to improve aqueous solubility and selectivity against drug-metabolizing CYPs while maintaining the CYP4A11- and CYP4F2-inhibitory activities led to the identification of acetylpiperidine compound 11c. Compound 11c inhibited 20-HETE production in both human and rat renal microsomes and exhibited a favorable pharmacokinetic profile. Furthermore, 11c also significantly inhibited renal 20-HETE production in Sprague-Dawley rats after oral dosing at 0.1 mg/kg.


Assuntos
Sistema Enzimático do Citocromo P-450 , Ácidos Hidroxieicosatetraenoicos , Humanos , Animais , Ratos , Ratos Sprague-Dawley , Ácidos Hidroxieicosatetraenoicos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Citocromo P-450 CYP4A
7.
Biomedicines ; 10(8)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36009402

RESUMO

Genetic manipulation is one of the indispensable techniques to examine gene functions both in vitro and in vivo. In particular, cardiovascular phenotypes such as blood pressure cannot be evaluated in vitro system, necessitating the creation of transgenic or gene-targeted knock-out and knock-in experimental animals to understand the pathophysiological roles of specific genes on the disease conditions. Although genome-wide association studies (GWAS) in various human populations have identified multiple genetic variations associated with increased risk for hypertension and/or its complications, the causal links remain unresolved. Genome-editing technologies can be applied to many different types of cells and organisms for creation of knock-out/knock-in models. In the post-GWAS era, it may be more worthwhile to validate pathophysiological implications of the risk variants and/or candidate genes by creating genome-edited organisms.

8.
Exp Anim ; 71(3): 368-375, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35354714

RESUMO

We have previously reported that a major quantitative trait locus (QTL) responsible for susceptibility to salt-induced stroke in the stroke-prone spontaneously hypertensive rat (SHRSP) is located in a 3-Mbp region on chromosome 1 covered by SHRSP.SHR-(D1Rat23-D1Rat213)/Izm (termed Pr1.31), a congenic strain with segments from SHRSP/Izm introduced into the stroke-resistant SHR/Izm. Here, we attempted to narrow down the candidate region on chromosome 1 further through analyses of subcongenic strains constructed for the target region. Simultaneously, salt-induced kidney injury was evaluated through the measurement of urinary albumin and the gene expression of renal tubular injury markers (Kim-1 and Clu) to explore a possible mechanism leading to the onset of stroke. All subcongenic strains examined in this study showed lower susceptibility to salt-induced stroke than SHRSP. Interestingly, Pr1.31 had the lowest stroke susceptibility when compared with newly constructed subcongenic strains harboring fragments of the congenic sequence in Pr1.31. Although Kim-1 and Clu expression after 1 week of salt loading in Pr1.31 did not differ significantly from those in SHRSP, the urinary albumin level of Pr1.31 was significantly lower than those of the other subcongenic strains and that of SHRSP. The present results indicated that, although the congenic fragment in Pr1.31 harbored the gene(s) related to salt-induced organ damages, further genetic dissection of the candidate region was difficult due to multiple QTLs suggested in this region. Further analysis using Pr1.31 will unveil genetic and pathophysiological mechanisms underlying salt-induced end organ damages in SHRSP.


Assuntos
Hipertensão , Cloreto de Sódio na Dieta , Acidente Vascular Cerebral , Albuminas/efeitos adversos , Albuminas/genética , Animais , Humanos , Hipertensão/genética , Rim , Ratos , Ratos Endogâmicos SHR , Cloreto de Sódio na Dieta/efeitos adversos , Acidente Vascular Cerebral/genética
9.
J Stroke Cerebrovasc Dis ; 31(5): 106421, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35255289

RESUMO

OBJECTIVES: In a previous study, a mushroom was shown to digest milk protein to a mixture of oligopeptides and free amino acids. The aim of this study was to examine effects of this mixture, i.e., mushroom-fermented milk, on blood pressure and stroke susceptibility in the stroke-prone spontaneously hypertensive rats (SHRSP). MATERIALS AND METHODS: Rats were fed mushroom-fermented milk with or without 1 % salt water. Blood pressure was monitored either by the tail-cuff method or the telemetry system. Symptoms of stroke were examined every day to determine the stroke latency. RESULTS: Mushroom-fermented milk at 120 mg/Kg BW/day (estimated as a peptides/amino acids content) did not ameliorate hypertension in SHRSP. In contrast, mushroom-fermented milk significantly improved stroke susceptibility under salt-loading. The effects were replicated using milk fermented with three different mushrooms. To elucidate the effective components in mushroom-fermented milk, spermidine (3 mM), one of major components of mushroom-fermented milk, and a mixture of amino acids (0.8 g/L) was examined, both of which showed no significant effects on stroke susceptibility. Intake of mushroom-fermented milk did not affect sodium content significantly either in feces or in urine of the rats given 1% salt water. This observation indicated sodium absorption by the digestive system was not inhibited by intake of mushroom-fermented milk. CONCLUSION: Despite that the mechanisms were not elucidated, intake of mushroom-fermented milk effectively prevented stroke in SHRSP. Mushroom-fermented milk would be a new candidate for a supplemental nutrient supporting the cardiovascular health.


Assuntos
Agaricales , Hipertensão , Acidente Vascular Cerebral , Aminoácidos , Animais , Pressão Sanguínea , Humanos , Hipertensão/complicações , Hipertensão/prevenção & controle , Ratos , Ratos Endogâmicos SHR , Sódio , Acidente Vascular Cerebral/etiologia , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/prevenção & controle , Água/farmacologia
10.
Cell Mol Neurobiol ; 42(1): 243-253, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32648236

RESUMO

The blood-brain barrier (BBB) comprises three cell types: brain capillary endothelial cells (BECs), astrocytes, and pericytes. Abnormal interaction among these cells may induce BBB dysfunction and lead to cerebrovascular diseases. The stroke-prone spontaneously hypertensive rat (SHRSP) harbors a defective BBB, so we designed the present study to examine the role of these three cell types in a functional disorder of the BBB in SHRSP in order to elucidate the role of these cells in the BBB more generally. To this end, we employed a unique in vitro model of BBB, in which various combinations of the cells could be tested. The three types of cells were prepared from both SHRSPs and Wistar Kyoto rats (WKYs). They were then co-cultured in various combinations to construct in vitro BBB models. The barrier function of the models was estimated by measuring transendothelial electrical resistance and the permeability of the endothelial monolayer to sodium fluorescein. The in vitro models revealed that (1) BECs from SHRSPs had an inherent lower barrier function, (2) astrocytes of SHRSPs had an impaired ability to induce barrier function in BECs, although (3) both pericytes and astrocytes of SHRSPs and WKYs could potentiate the barrier function of BECs under co-culture conditions. Furthermore, we found that claudin-5 expression was consistently lower in models that used BECs and/or SHRSP astrocytes. These results suggested that defective interaction among BBB cells-especially BECs and astrocytes-was responsible for a functional disorder of the BBB in SHRSPs.


Assuntos
Barreira Hematoencefálica , Acidente Vascular Cerebral , Animais , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Técnicas de Cultura de Células , Células Cultivadas , Técnicas de Cocultura , Células Endoteliais/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Acidente Vascular Cerebral/metabolismo
11.
Clin Exp Hypertens ; 43(1): 34-41, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-32700574

RESUMO

Genetic approach using rat congenic lines between SHRSP/Izm and WKY/Izm identified stromal interaction molecule 1 (Stim1), an essential component of store-operated Ca2+ entry (SOCE), as a promising candidate gene responsible for the exaggerated sympathetic response to stress in SHRSP. Since SHRSP has a nonsense mutation in Stim1 resulting in the expression of a truncated form of STIM1 that caused reduction of SOCE activity in primary cultured cerebral astrocytes, we created SHRSP/Izm knocked-in with the wild-type Stim1 (KI SHRSP) by the CRISPR/Cas9 method to investigate whether the functional recovery of STIM1 would mitigate sympatho-excitation to stress in vivo in SHRSP. No potential off-target nucleotide substitutions/deletions/insertions were found in KI SHRSP. Western blotting and fluorescent Ca2+ imaging of astrocytes confirmed wild-type STIM1 expression and restored SOCE activity in astrocytes from KI SHRSP, respectively. Blood pressure (BP) measured by the tail-cuff method at 12, 16, and 20 weeks of age did not significantly differ between SHRSP and KI SHRSP, while the heart rate of KI SHRSP at 16 and 20 weeks of age was significantly lower than that of age-matched SHRSP. Unexpectedly, the sympathetic response to stress (evaluated with urinary excretion of norepinephrine under cold stress and BP elevation under cold/restraint stress) did not significantly differ between SHRSP and KI SHRSP. The present results indicated that the functional deficit of STIM1 was not a genetic determinant of the exaggerated sympathetic response to stress in SHRSP and that it would be necessary to explore other candidates within the congenic fragment on chromosome 1.


Assuntos
Astrócitos/metabolismo , Sistema Cardiovascular/fisiopatologia , Estresse Fisiológico/genética , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Sistema Nervoso Simpático/fisiopatologia , Animais , Pressão Sanguínea , Sistemas CRISPR-Cas , Proteínas de Ligação ao Cálcio/metabolismo , Técnicas de Introdução de Genes , Frequência Cardíaca , Masculino , Proteínas de Membrana/metabolismo , Mutação , Norepinefrina/urina , Fenótipo , Ratos , Ratos Endogâmicos SHR , Estresse Fisiológico/fisiologia
12.
FASEB J ; 34(6): 8749-8763, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32385915

RESUMO

Leukotriene B4 receptor 1 (BLT1), a high-affinity G-protein-coupled receptor for leukotriene B4 (LTB4 ), is expressed on various inflammatory cells and plays critical roles in several inflammatory diseases. In myocardial infarction (MI), various inflammatory cells are known to be recruited to the infarcted area, but the function of BLT1 in MI is poorly understood. Here, we investigated the role of BLT1 in MI and the therapeutic effect of a BLT1 antagonist, ONO-4057, on MI. Mice with infarcted hearts showed increased BLT1 expression and LTB4 levels. BLT1-knockout mice with infarcted hearts exhibited attenuated leukocyte infiltration, proinflammatory cytokine production, and cell death, which led to reduced mortality and improved cardiac function after MI. Bone-marrow transplantation studies showed that BLT1 expressed on bone marrow-derived cells was responsible for the exacerbation of inflammation in infarcted hearts. Furthermore, ONO-4057 administration attenuated the inflammatory responses in hearts surgically treated for MI, which resulted in reduced mortality and improved cardiac function after MI. Our study demonstrated that BLT1 contributes to excessive inflammation after MI and could represent a new therapeutic target for MI.


Assuntos
Inflamação/metabolismo , Infarto do Miocárdio/metabolismo , Receptores do Leucotrieno B4/metabolismo , Animais , Modelos Animais de Doenças , Leucotrieno B4/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/fisiologia
13.
Cancer Sci ; 111(6): 2016-2027, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32248600

RESUMO

Malignant mesothelioma (MM) is one of the most lethal tumors in humans. The onset of MM is linked to exposure to asbestos, which generates reactive oxygen species (ROS). ROS are believed to be derived from the frustrated phagocytosis and the iron in asbestos. To explore the pathogenesis of MM, peritoneal MM was induced in rats by the repeated intraperitoneal injection of iron saccharate and nitrilotriacetate. In the present study, we used microarray techniques to screen the microRNA (miR) expression profiles of these MM. We observed that the histological subtype impacted the hierarchical clustering of miR expression profiles and determined that miR-199/214 is a distinctive feature of iron saccharate-induced sarcomatoid mesothelioma (SM). Twist1, a transcriptional regulator of the epithelial-mesenchymal transition, has been shown to activate miR-199/214 transcription; thus, the expression level of Twist1 was examined in iron-induced and asbestos-induced mesotheliomas in rats. Twist1 was exclusively expressed in iron saccharate-induced SM but not in the epithelioid subtype. The Twist1-miR-199/214 axis is activated in iron saccharate-induced and asbestos-induced SM. The expression levels of miR-214 and Twist1 were correlated in an asbestos-induced MM cell line, suggesting that the Twist1-miR-199/214 axis is preserved. MeT5A, an immortalized human mesothelial cell line, was used for the functional analysis of miR. The overexpression of miR-199/214 promoted cellular proliferation, mobility and phosphorylation of Akt and ERK in MeT5A cells. These results indicate that miR-199/214 may affect the aggressive biological behavior of SM.


Assuntos
Neoplasias Pulmonares/patologia , Mesotelioma/patologia , MicroRNAs/biossíntese , Neoplasias Peritoneais/patologia , Proteína 1 Relacionada a Twist/biossíntese , Animais , Amianto/toxicidade , Linhagem Celular , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Ferro/toxicidade , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mesotelioma/genética , Mesotelioma/metabolismo , Mesotelioma Maligno , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/metabolismo , Ratos
14.
Surg Case Rep ; 6(1): 39, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32072324

RESUMO

BACKGROUND: Intrahepatic artery pseudoaneurysms are mostly iatrogenic and result from hepatobiliary interventions. The incidence of intrahepatic artery pseudoaneurysms within liver tumors without prior intervention is extremely rare. We presented herein the first report of a case of an intratumoral pseudoaneurysm within a liver metastasis of gastric cancer without any prior intervention during chemotherapy. CASE PRESENTATION: A 59-year-old male patient underwent a distal gastrectomy and D2 lymph node dissection for gastric cancer. He was treated in the emergency room for right abdominal pain following the 4th cycle of nivolumab administration as second-line chemotherapy after adjuvant chemotherapy with S-1 and first-line chemotherapy for a liver metastasis of gastric cancer with ramucirumab plus paclitaxel. CT showed a 72-mm metastatic liver tumor containing a 9-mm pseudoaneurysm and fluid collection around the hepatic edge. Intrahepatic artery pseudoaneurysm within the metastatic liver tumor was diagnosed, with the surrounding fluid indicating potential, active bleeding. An emergency angiography confirmed the presence of a pseudoaneurysm in the intrahepatic artery, which was embolized using microcoils. The contributory causes of the intratumoral pseudoaneurysm were assumed to be the following: (1) tumor necrosis leading to encasement, erosion of the vessel wall, and subsequent arterial wall weakening; and (2) inhibition of vascular endothelial growth by ramucirumab resulting in a vessel wall breach and pseudoaneurysm formation. CONCLUSION: It is necessary to recognize that pseudoaneurysms can arise within a metastatic liver tumor during chemotherapy.

15.
Hypertens Res ; 42(7): 981-989, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30850755

RESUMO

Oxidative stress has been implicated in the pathophysiology of cerebral stroke. As NADPH oxidases (NOXs) play major roles in the regulation of oxidative stress, we hypothesized that reduction of NOX activity by depletion of p22phox, an essential subunit of NOX complexes, would prevent cerebral stroke. To investigate this, we used the stroke-prone spontaneously hypertensive rat (SHRSP) and the p22phox-deleted congenic SHRSP. Although p22phox depletion reduced blood pressure under salt loading, it did not ameliorate oxidative stress or reduce the incidence of salt-induced stroke in SHRSPs. Additional pharmacological reduction of oxidative stress using antioxidant reagents with different mechanisms of action was necessary to prevent stroke, indicating that NOX was not the major target in salt-induced stroke in SHRSPs. On the other hand, oxidative stress measured based on urinary isoprostane levels showed significant correlations with blood pressure, stroke latency and urinary protein excretion under salt loading, suggesting an important role of oxidative stress per se in hypertension and hypertensive organ damage. Overall, our results imply that oxidative stress from multiple sources influences stroke susceptibility and other hypertensive disorders in salt-loaded SHRSPs.


Assuntos
Antioxidantes/farmacologia , Inibidores Enzimáticos/farmacologia , NADPH Oxidases/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Acidente Vascular Cerebral/prevenção & controle , Xantina Oxidase/antagonistas & inibidores , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Óxidos N-Cíclicos/farmacologia , Febuxostat/farmacologia , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Transgênicos , Espécies Reativas de Oxigênio/metabolismo , Cloreto de Sódio , Marcadores de Spin , Acidente Vascular Cerebral/induzido quimicamente , Acidente Vascular Cerebral/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia
16.
Biomed Res Int ; 2019: 5049746, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30792992

RESUMO

The stroke-prone spontaneously hypertensive rat (SHRSP) suffers from severe hypertension and hypertensive organ damage such as cerebral stroke and kidney injury under salt-loading. By a quantitative trait locus (QTL) analysis between SHRSP and SHR (the stroke-resistant parental strain of SHRSP), two major QTLs for stroke susceptibility were identified on chromosomes 1 and 18 of SHRSP, which were confirmed in congenic strains constructed between SHRSP and SHR. As the progression of renal dysfunction was suggested to be one of the key factors inducing stroke in SHRSP, we examined effects of the stroke-related QTLs on kidney injury using two congenic strains harboring either of SHRSP-derived fragments of chromosomes 1 and 18 in the SHR genome. The congenic strains were challenged with 1% NaCl solution for 4 weeks; measurement of systolic blood pressure and urinary isoprostane level (a marker for oxidative stress) and evaluation of renal injury by quantification of genetic marker expression and histological examination were performed. We found that the congenic rats with SHRSP-derived fragment of chromosome 18 showed more severe renal damage with higher expression of Col1α-1 (a genetic marker for renal fibrosis) and higher urinary isoprostane level. In contrast, the fragment of chromosome 1 from SHRSP did not give such effects on SHR. Blood pressure was not greater in either of the congenic strains when compared with SHR. We concluded that the QTL region on chromosome 18 might deteriorate salt-induced renal injury in SHR through a blood pressure-independent mechanism.


Assuntos
Injúria Renal Aguda/genética , Hipertensão/genética , Locos de Características Quantitativas/genética , Acidente Vascular Cerebral/genética , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Animais , Pressão Sanguínea/genética , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Modelos Animais de Doenças , Humanos , Hipertensão/complicações , Hipertensão/fisiopatologia , Rim/patologia , Ratos , Ratos Endogâmicos SHR/genética , Cloreto de Sódio/efeitos adversos , Acidente Vascular Cerebral/induzido quimicamente , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/patologia
17.
Hypertens Res ; 42(5): 610-617, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30655626

RESUMO

Oxidative stress is involved in the pathogenesis of hypertension and hypertensive organ damage. Our previous study suggested that stroke-prone spontaneously hypertensive rats (SHRSP) exhibited greater oxidative stress than SHR and that the stroke incidence was significantly greater in SHRSP than SHR. Therefore, we hypothesized that oxidative stress was responsible for the stroke susceptibility in SHRSP. The present study constructed Prdx2 (a gene coding an antioxidative enzyme)-knockout (KO) SHR to examine whether Prdx2 knockout would make SHR more vulnerable to hypertensive organ damage, including stroke. Prdx2-KO SHR were created using CRISPR/CAS9 for genome editing. Eight-week-old male SHR and Prdx2-KO SHR were fed 1% NaCl for 2 months to induce blood pressure (BP) changes and stroke occurrence. The baseline BP was significantly greater in KO SHR, and this difference disappeared after salt loading. The life span of KO SHR was significantly reduced compared to that of SHR despite no differences in BP under salt-loading. However, no stroke was observed in KO SHR. The severity of hypertensive renal and cardiac injuries did not differ significantly between the two strains, but oxidative stress, evaluated using urinary isoprostane excretion and DHE staining, was greater in KO SHR. These results indicated that the Prdx2-depletion caused a shorter life span and modest BP increase in SHR via increased oxidative stress. The pathophysiological roles of oxidative stress in this model should be clarified in future studies.


Assuntos
Pressão Sanguínea , Hipertensão/complicações , Longevidade , Peroxirredoxinas/fisiologia , Acidente Vascular Cerebral/etiologia , Animais , Feminino , Técnicas de Inativação de Genes , Masculino , Ratos Endogâmicos SHR
18.
Sci Rep ; 8(1): 9403, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925869

RESUMO

We previously revealed that two major quantitative trait loci (QTLs) for stroke latency of the stroke-prone spontaneously hypertensive rat (SHRSP) under salt-loading were located on chromosome (Chr) 1 and 18. Here, we attempted further dissection of the stroke-QTLs using multiple congenic strains between SHRSP and a stroke-resistant hypertensive rat (SHR). Cox hazard model among subcongenic strains harboring a chromosomal fragment of Chr-1 QTL region showed that the most promising region was a 2.1 Mbp fragment between D1Rat177 and D1Rat97. The QTL region on Chr 18 could not be narrowed down by the analysis, which may be due to multiple QTLs in this region. Nonsynonymous sequence variations were found in four genes (Cblc, Cxcl17, Cic, and Ceacam 19) on the 2.1 Mbp fragment of Chr-1 QTL by whole-genome sequence analysis of SHRSP/Izm and SHR/Izm. Significant changes in protein structure were predicted in CBL-C and CXCL17 using I-TASSER. Comprehensive gene expression analysis in the kidney with a cDNA microarray identified three candidate genes (LOC102548695 (Zinc finger protein 45-like, Zfp45L), Ethe1, and Cxcl17). In conclusion, we successfully narrowed down the QTL region on Chr 1, and identified six candidate genes in this region.


Assuntos
MicroRNAs/genética , Locos de Características Quantitativas/genética , Cloreto de Sódio/toxicidade , Acidente Vascular Cerebral/induzido quimicamente , Acidente Vascular Cerebral/genética , Animais , Quimiocinas/genética , Quimiocinas CXC , Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 18/genética , Humanos , Rim/metabolismo , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Endogâmicos SHR
19.
Cardiovasc Res ; 113(10): 1243-1255, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28898995

RESUMO

AIMS: Transient receptor potential cation channel subfamily melastatin member 4 (TRPM4), a Ca2+-activated nonselective cation channel abundantly expressed in the heart, has been implicated in conduction block and other arrhythmic propensities associated with cardiac remodelling and injury. The present study aimed to quantitatively evaluate the arrhythmogenic potential of TRPM4. METHODS AND RESULTS: Patch clamp and biochemical analyses were performed using expression system and an immortalized atrial cardiomyocyte cell line (HL-1), and numerical model simulation was employed. After rapid desensitization, robust reactivation of TRPM4 channels required high micromolar concentrations of Ca2+. However, upon evaluation with a newly devised, ionomycin-permeabilized cell-attached (Iono-C/A) recording technique, submicromolar concentrations of Ca2+ (apparent Kd = ∼500 nM) were enough to activate this channel. Similar submicromolar Ca2+ dependency was also observed with sharp electrode whole-cell recording and in experiments coexpressing TRPM4 and L-type voltage-dependent Ca2+ channels. Numerical simulations using a number of action potential (AP) models (HL-1, Nygren, Luo-Rudy) incorporating the Ca2+- and voltage-dependent gating parameters of TRPM4, as assessed by Iono-C/A recording, indicated that a few-fold increase in TRPM4 activity is sufficient to delay late AP repolarization and further increases (≥ six-fold) evoke early afterdepolarization. These model predictions are consistent with electrophysiological data from angiotensin II-treated HL-1 cells in which TRPM4 expression and activity were enhanced. CONCLUSIONS: These results collectively indicate that the TRPM4 channel is activated by a physiological range of Ca2+ concentrations and its excessive activity can cause arrhythmic changes. Moreover, these results demonstrate potential utility of the first AP models incorporating TRPM4 gating for in silico assessment of arrhythmogenicity in remodelling cardiac tissue.


Assuntos
Potenciais de Ação , Arritmias Cardíacas/metabolismo , Simulação por Computador , Átrios do Coração/metabolismo , Frequência Cardíaca , Modelos Cardiovasculares , Miócitos Cardíacos/metabolismo , Análise Numérica Assistida por Computador , Canais de Cátion TRPM/metabolismo , Potenciais de Ação/efeitos dos fármacos , Angiotensina II/farmacologia , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Sinalização do Cálcio , Células HEK293 , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Humanos , Cinética , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Técnicas de Patch-Clamp , Período Refratário Eletrofisiológico , Canais de Cátion TRPM/genética
20.
Inorg Chem ; 56(9): 4928-4936, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28394567

RESUMO

We have synthesized two luminescent mononuclear Cu(I) complexes, [Cu(PPh2Tol)(THF)(4Mepy)2](BF4) (1) and [Cu(PPh2Tol)(4Mepy)3](BF4) (2) (PPh2Tol = diphenyl(o-tolyl)phosphine, 4Mepy = 4-methylpyridine, THF = tetrahydrofuran), and investigated their crystal structures, luminescence properties, and vapor-induced ligand exchange reactions in the solid state. Both coordination complexes are tetrahedral, but one of the three 4Mepy ligands of complex 2 is replaced by a THF solvent molecule in complex 1. In contrast to the very weak blue emission of the THF-bound complex 1 (wavelength of emission maximum (λem) = 457 nm, emission quantum yield (Φem) = 0.02) in the solid state at room temperature, a very bright blue-green emission was observed for 2 (λem = 484 nm, Φem = 0.63), suggesting a contribution of the THF ligand to nonradiative deactivation. Time-dependent density functional theory calculations and emission lifetime measurements suggest that the room-temperature emissions of the complexes are due to thermally activated delayed fluorescence from the metal-to-ligand charge transfer excited state. Interestingly, by exposing the solid sample of THF-bound 1 to 4Mepy vapor, the emission intensity drastically increased and the emission color changed from blue to blue-green. Powder X-ray diffraction measurements revealed that the emission change of 1 is due to the vapor-induced ligand exchange of THF for 4Mepy, forming the strongly emissive complex 2. Further emission tuning was achieved by exposing 1 to pyrimidine or pyrazine vapors, forming green (λem = 510 nm) or orange (λem = 618 nm) emissive complexes, respectively. These results suggest that the vapor-induced ligand exchange is a promising method to control the emission color of luminescent Cu(I) complexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...